A Dynamical System for Plant Pattern Formation: A Rigorous Analysis

نویسندگان

  • Pau Atela
  • Christophe Golé
  • Scott Hotton
چکیده

We present a rigorous mathematical analysis of a discrete dynamical system modeling plant pattern formation. In this model, based on the work of physicists Douady and Couder, fixed points are the spiral or helical lattices often occurring in plants. The frequent occurrence of the Fibonacci sequence in the number of visible spirals is explained by the stability of the fixed points in this system, as well as by the structure of their bifurcation diagram. We provide a detailed study of this diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Dynamical behavior of a stage structured prey-predator model

In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...

متن کامل

Stationary Coexistence of Hexagons and Rolls via Rigorous Computations

In this work we introduce a rigorous computational method for finding heteroclinic solutions of a system of two second order differential equations. These solutions correspond to standing waves between rolls and hexagonal patterns of a two-dimensional pattern formation PDE model. After reformulating the problem as a projected boundary value problem (BVP) with boundaries in the stable/unstable m...

متن کامل

Dynamical models for plant pattern formation

In recent years computer models have become increasingly important in providing insights into the developmental process of plants. The study of phyllotactic patterns provides a good example of this. Despite the huge diversity of plant forms there are only a few ways in which plant organs such as leaves, florets, scales, etc. are arranged along a plant stem. The prevalence of a small number of p...

متن کامل

Bifurcation analysis and dynamics of a Lorenz –type dynamical system 

./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Nonlinear Science

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2008